Pandemic Over? COVID-19 World data Amateur Python Analysis

From an educational perspective, we review current COVID-19 data and arrive look at lockdowns and population density appears to have no numerical effect currently on COVID-19. In any case, this is more about exploring the code from a beginner’s standpoint with Python and DataFrames.
#covid19 #pandemicover #coviddata
CSV files found here:
https://ourworldindata.org/coronaviru…
Code: (Had to remove the angle brackets)
import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
from scipy.stats import spearmanr
from scipy.stats import kendalltau
from scipy.stats import pearsonr
from scipy import stats
import seaborn as sns
import warnings
warnings.filterwarnings(“ignore”)
#Pandemic
Claim Currently Invalid —Ralph Turchiano
data = pd.read_csv(‘owid-covid-data-19SEP2020.csv’)
data.info()
pd.set_option(‘max_columns’, None)
data.tail(5)
data[‘date’] = pd.to_datetime(data[‘date’])
data.info()
data_18SEP = data[data[‘date’]==’2020-09-18′]
data_ind = data_18SEP[data_18SEP[‘human_development_index’]=.8]
data_ind.head(10)
data_ind.drop([‘iso_code’,’continent’,’handwashing_facilities’,’stringency_index’,], axis=1, inplace=True)
data_ind.columns
data_ind[‘extreme_poverty’].fillna(0, inplace=True)
data_compare = pd.DataFrame([data.loc[37991],data.loc[41736]])
data_compare
data_compare.set_index(‘location’,inplace=True)
data_compare[‘total_cases_per_million’]
data_Swe_USA=pd.DataFrame(data_compare[[‘total_cases_per_million’,’new_cases_per_million’,’new_deaths_per_million’]])
data_Swe_USApd.DataFrame(data_compare[[‘total_cases_per_million’,’new_cases_per_million’,’new_deaths_per_million’]])
data_Swe_USA
data_ind.drop([‘date’,’new_cases’,’new_deaths’,’total_tests’, ‘total_tests_per_thousand’,
‘new_tests_per_thousand’, ‘new_tests_smoothed’, ‘new_tests’,
‘new_tests_smoothed_per_thousand’, ‘tests_per_case’,’tests_units’,’new_deaths_per_million’,’positive_rate’ ], axis=1, inplace=True)
data_ind.tail()
data_ind.dropna(inplace=True)
data_ind.corr(“kendall”)
data_18SEP.tail()
data_18SEP.loc[44310]
data_18SEP.loc[44310,[‘new_cases_smoothed_per_million’,’new_deaths_smoothed_per_million’]]
New =pd.DataFrame(data[[‘new_cases_smoothed_per_million’,’new_deaths_smoothed_per_million’]])
New.corr(‘kendall’)
dataw = data.loc[data[‘iso_code’] == ‘OWID_WRL’]
dataw
dataw.datetime = pd.to_datetime(data.date)
dataw.set_index(‘date’, inplace=True)
data_cl = pd.DataFrame(dataw[[‘new_deaths_smoothed’,’new_cases_smoothed’]])
data_cl.dropna(inplace=True)
data_cl.plot(figsize=(30,12))
data_cl.tail(20)



Categories: Uncategorized

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: